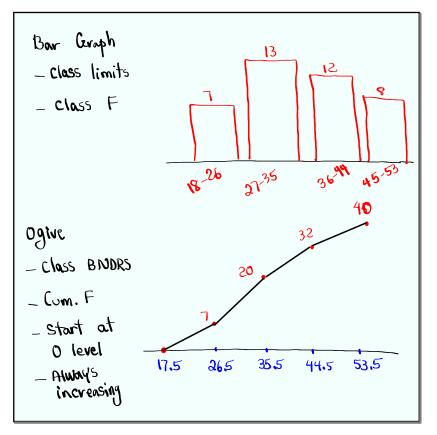


Feb 19-8:47 AM

Consider H	he freq. t	table k	selow			
class limits	CLASS BNDRS	class MP1	class Fl	Cum.F	Rel.F	7.F
18 - 26	17.5-26.5	22	٦	7	•175	17.5%
a 7 -35	26.5-35.5	31	13	20	•325	32.5/
36 - 44	35.5 - 44.5	40	12	32	.300	30. j
45 - 53	4 4 5 - 53.5	49	8	40	.200	20.0
4 Rows - + 4 classes Class width = 27-18 = 36 - 27 = 45 - 36 = 9 Rel. $f = \frac{f}{n} = \frac{f}{40}$						



Jun 26-4:40 PM

Consider the Sample below
2 3 3 3 5 5 5 8
In =8 2) Range = 8 - 2 = 6
3) Midrange
$$\frac{9}{2}$$
 = 5 4) Mode: $3 \neq 5$
5) $\geq x = 34$ 6) $\geq x^2 = 170$
7) $\overline{x} = \frac{2x}{n} = \frac{34}{8}$ 8) $S^2 = \frac{n \geq x^2 - (\geq x)^2}{n(n-4)}$
whole $\rightarrow 44$ $= \frac{8 \cdot 170 - 34^2}{8(8-4)} = \frac{204}{56}$
Sind
9) $S = \sqrt{S^2} = \sqrt{3.643} \approx (1.909)$
10) Estimate $S \approx \frac{Range}{4} = \frac{6}{4} = (1.5)$

what is Variance? It is the measure of spread of data elements from the mean. $S^2 = \sum (k - \overline{k})^2$ n-1 why divide by n-1? It turns out is we divide by n-1 instead of n, we get a better estimator Sor population Standard deviation. Sample standard deviation: $S = \sqrt{S^2}$ $S \ge 0$, $S \ge 0$ If S is Small ⇒ Data elements are close to $\overline{\chi}$. 19 S is big => Data elements are more spread out from $\overline{\chi}$. IS S=O, All Jata elements are the Some as $\overline{\chi}$.

Jun 26-4:57 PM

Consider the Sample below
5 5 5 5 5 5 5

$$n=6$$
 $Z = 30$ $Z = 150$
 $\overline{\chi} = \frac{Z \chi}{n} = \frac{30}{6} = 5$ $S^2 = \frac{n \ge \chi^2 - (\ge \chi)^2}{n(n-1)}$
 $= \frac{6 \cdot 150 - 30^2}{6(6-1)} = \frac{0}{30} = 0$
 $S = \sqrt{0} = 0$

Consider the Sample below
5 5 5 5 5 50
$n=6 \ge \chi = 75 \ge \chi^2 = 2625$
$\bar{\chi} = \frac{\Xi \chi}{n} = \frac{75}{6} = 12.5 \qquad S^2 = \frac{n \Xi \chi^2 - (\Xi \chi)^2}{n(n-1)}$
$S = \sqrt{S^2}$ = $\frac{6 \cdot 26625 - 75^2}{6(6-1)}$
= √337.5 ≈ 18.371 = 337.5
Now the Sample below
5 5 5 5 5 500
$n=6$ $\ge x = 525$ $\ge x^2 = 250125$
$\overline{\chi}_{=87.5}$ $S_{=}^{2} 40837.5$ $S_{=}202.083$

Jun 26-5:08 PM

```
Z-Score

It is a process to standardize data

elements.

It tells us how many Standard

deviation is the data element from the

mean.

Always round to 3-decimal Places.

Z = \frac{x - \overline{x}}{S}

why do we need it? we need it

to compare data elements from

different Samples.

IS 2 \leq Z \leq 2 \Rightarrow Data element

is usual

IS Z \leq -2 or Z \geq 2 \Rightarrow Unusual
```

Robert got 88 on exam 1.

$$\overline{\chi} = 80$$
, $S = 5$
 $\overline{Z} = \frac{\chi - \overline{\chi}}{S} = \frac{88 - 80}{5} = \frac{8}{5} = 1.6$
Since $-2 \le \overline{Z} \le 2$ \rightarrow USUAL Score
Robert got $\$2$ on $exam 2$.
 $\overline{\chi} = 74$ $S = 4$
 $\overline{Z} = \frac{\chi - \overline{\chi}}{S} = \frac{82 - 74}{4} = \frac{8}{4} = 2$
This Score is on the border of
being UNUSUAL.

Jun 26-5:20 PM

Lisa makes \$5000/mo. as a nurse.
Jose makes \$10000/mo. as a teacher.
Who is Joing better in their field?
Nurse
$$\rightarrow \overline{\chi} = 4000$$
, $S = 400$
Teacher $\rightarrow \overline{\chi} = 8000$, $S = 500$
 $Z_{\text{Lisa}} = \frac{\chi - \overline{\chi}}{S} = \frac{5000 - 4000}{400} = \frac{1000}{400} = 2.5$
 $Z_{\text{Jose}} = \frac{\chi - \overline{\chi}}{S} = \frac{10000 - 8000}{500} = 2000 = 4$

When mean, mode, and median are the Same, Lata List. will be Symmetric and takes a shape Called bell Curve. Emperical Rule About 68% of Jata Sall Within $\overline{\chi} \pm S$ $\overline{\chi}$ ±25 4 95% of " 4 $\overline{\chi}$ ±3S * fo .\r.pp 0 4 11 Usual Range 🔿 Z ± 25

Jun 26-5:33 PM

I took a Survey of so students.
the age dist. were symmetric with

$$\overline{\chi} = 32$$
 & S=6.
68%. Range: $\overline{\chi} \pm S = 32 \pm 6 \Rightarrow 26 \pm 38$
68%. of so = 54.4
 ≈ 55 were between
 ≈ 55 were between
 ≈ 55 of a 38 Yes
Usual Range $\Rightarrow 95\%$. Range old.
 $\overline{\chi} \pm 2S = 32 \pm 2(6)$
95%. of so = $= 32 \pm 12$
 95% . of so = $= 32 \pm 12$
 95% . of so = $= 32 \pm 12$
 95% . of so = $= 32 \pm 12$
 76 Students
 2.5% 95% . 2.5% were aged
between 20 ± 44 .
 $\overline{\chi} \pm 2S = 30$ Students

Exam 1 Scores were bell-shape with

$$\overline{\chi}=84$$
 & S=T.
Find its Usual Range.
95/. Range $\rightarrow \overline{\chi}\pm25$
 $84\pm2(7)=84\pm14=170$ to 98

Jun 26-5:45 PM

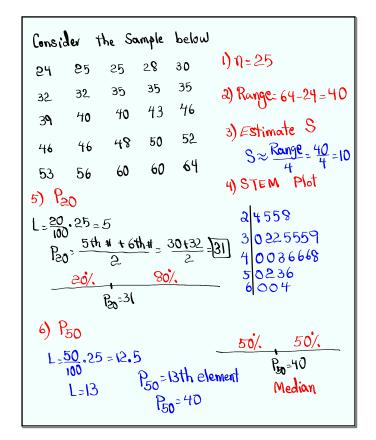
60 exams had the following 5-Number
Summary
30 '70 78 80 100
Min Q1 MD Q3 Max
Draw Box Plot

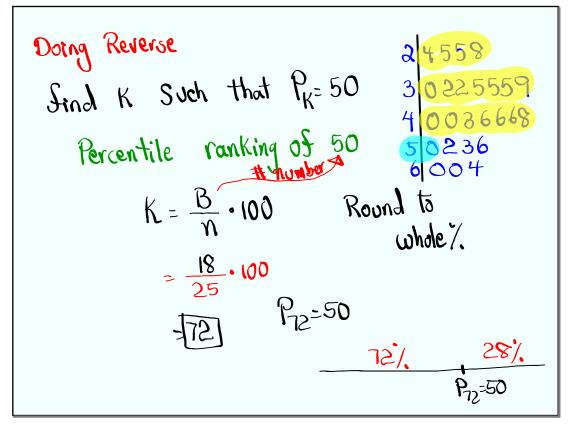
$$30 = 15 70 = 15$$

 $30 = 15 70 = 10$
How many Scored below 80? 45
what i. of score were below 80? 75!.
IQR = Q3 - Q1 = 80-70 = 10
Upper Sence = Q3 + 1.5(IQR) = 80 + 1.5(10) = 95
Lower Fence = Q1 - 1.5(IQR) = 70 - 1.5(10) = 55
Discuss outliers. 30 to 55 OR 95 to 100

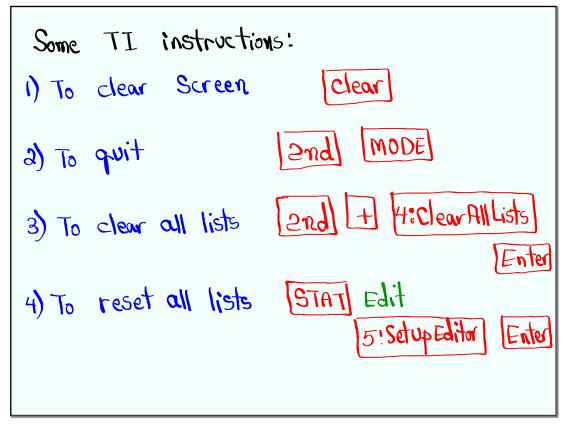
Percentile: Dota must be Sorted (Smallest -> Largest) PK Notation (100-K)% K% P_K P80 ex: Pio 90% 10/. 80% 20% Pio 1) Location $L = \frac{K}{100} \cdot n^{43}$ Ro If L is Jecimal -> Round-up P_K = Lth element If L is a whole # PK= Lth element + Next element

Jun 26-6:14 PM

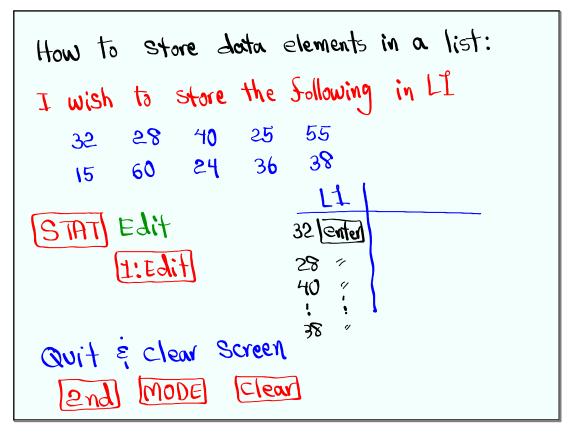


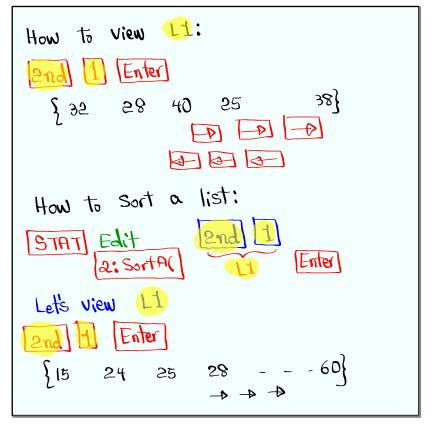


Jun 26-6:32 PM

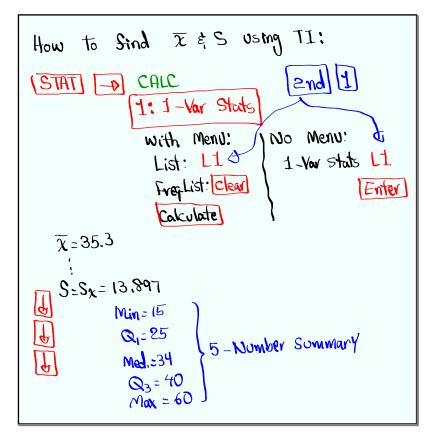


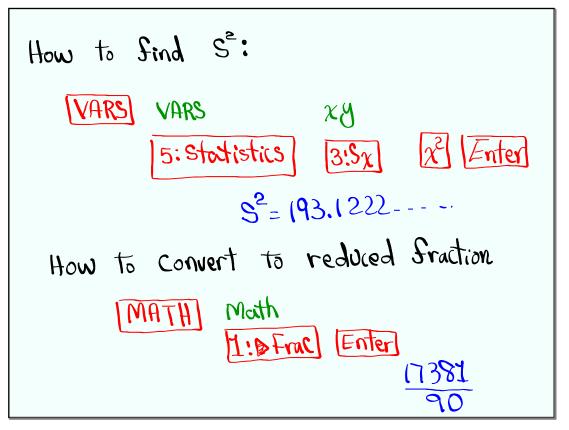
Jun 26-6:45 PM





Jun 26-6:55 PM





Jun 26-7:11 PM